Approximate Bayesian inference for a spatial point process model exhibiting regularity and random aggregation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate methods in Bayesian point process spatial models

A range of point process models which are commonly used in spatial epidemiology applications for the increased incidence of disease are compared. The models considered vary from approximate methods to an exact method. The approximate methods include the Poisson process model and methods that are based on discretization of the study window. The exact method includes a marked point process model,...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Approximate Bayesian inference for random effects meta-analysis.

Whilst meta-analysis is becoming a more commonplace statistical technique, Bayesian inference in meta-analysis requires complex computational techniques to be routinely applied. We consider simple approximations for the first and second moments of the parameters of a Bayesian random effects model for meta-analysis. These computationally inexpensive methods are based on simple analytical formula...

متن کامل

Approximate Bayesian Inference for Hierarchical Gaussian Markov Random Fields Models

Many commonly used models in statistics can be formulated as (Bayesian) hierarchical Gaussian Markov random field models. These are characterised by assuming a (often large) Gaussian Markov random field (GMRF) as the second stage in the hierarchical structure and a few hyperparameters at the third stage. Markov chain Monte Carlo is the common approach for Bayesian inference in such models. The ...

متن کامل

Approximate Bayesian inference for large spatial datasets using predictive process models

This article addresses the challenges of estimating hierarchical spatial models to large datasets. With the increasing availability of geocoded scientific data, hierarchical models involving spatial processes have become a popular method for carrying out spatial inference.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scandinavian Journal of Statistics

سال: 2021

ISSN: 0303-6898,1467-9469

DOI: 10.1111/sjos.12509